4z^2+8z^2+10z^2=88^2

Simple and best practice solution for 4z^2+8z^2+10z^2=88^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4z^2+8z^2+10z^2=88^2 equation:



4z^2+8z^2+10z^2=88^2
We move all terms to the left:
4z^2+8z^2+10z^2-(88^2)=0
We add all the numbers together, and all the variables
22z^2-7744=0
a = 22; b = 0; c = -7744;
Δ = b2-4ac
Δ = 02-4·22·(-7744)
Δ = 681472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{681472}=\sqrt{30976*22}=\sqrt{30976}*\sqrt{22}=176\sqrt{22}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-176\sqrt{22}}{2*22}=\frac{0-176\sqrt{22}}{44} =-\frac{176\sqrt{22}}{44} =-4\sqrt{22} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+176\sqrt{22}}{2*22}=\frac{0+176\sqrt{22}}{44} =\frac{176\sqrt{22}}{44} =4\sqrt{22} $

See similar equations:

| 4c-9=7c | | 15=6x^2 | | d=150+50 | | p^2-8p+41=0 | | -2(x)=-7x+25x+10 | | x/3+2x/5=55 | | -3x=68=x+32 | | 2n+6-n=24 | | -3/4c=9 | | -3x+5=-8x-10 | | 72+x=30 | | 105-7x/5=77 | | n=4+12 | | k4​ =116​ | | (10x+7)=(7x | | -2(n-6)=14 | | 2x+5(x-7)=42 | | 45+6x+3/2x=180 | | 2/8n-4=4 | | 4(1+7b)=-18 | | 8-3x+2x=2x-24+2 | | 3(n+9)=-21 | | w-48=-93 | | 14=-2n-12 | | 4x+51=9x+6 | | 8-+2x=2x-24-+2 | | 18e-18=10e+12 | | -18w=-8w-20 | | (3+z)/4+5=19 | | -2x+2=2+2x | | 3x+2=-13+6x | | X+5=3x+-1 |

Equations solver categories